Modern Methods for fish migration monitoring

PIT tags and EU case studies

Raf Baeyens, MSc Fish Biology EU project manager Biomark Inc.

Content

- Intro
- Fish migration monitoring methods
- EU Case studies:
 - Austria
 - Germany
 - Other systems around Europe
- Take home message

Fish migration monitoring methods

- Nets/cages
- Camera systems
- Tagging:
 - Active tags (radio, acoustic)
 - Passive tags (<u>PIT tags</u>)

Fish migration monitoring methods NETS/CAGES

(Photo Lee Baumgartner NSW DPI)

EasyTagging still possible

Relatively cheap

- Fish welfare
- Recurrent behavior
- Debris maintenance
- Fish vs mesh size

Fish migration monitoring methods CAMERA SYSTEMS (VAKI RIVERWATCHER)

- VAKI: realtime data
 - Video + IR Scanner (turbid/dark)
 - PIT antenna possible
 - Vertical slot fishways
 - Derive all fish to tunnel
- Recurrent behavior
 - Debris vs mesh size
 - Not for small fish
 - maintenance

Fish migration monitoring methods TAGGING WITH ACTIVE TAGS

https://fishaz.azgfd.com/

- Long range (acoustic)Deep water (acoustic)

 - Salt water (acoustic)
 - Sensor tags (predation, depth)
 - Continuous tracking (radio)
 - Fish welfare (surgery, ext. ant.)
 - Expensive tags
 - Battery life vs tag size
 - Detailed info hard with acoustic
 - Realtime data difficult
 - System performance?

Fish migration monitoring methods TAGGING WITH PASSIVE TAGS (PIT)

- Small tags (5g fish)
- Cheap tags
 - Injectable (welfare)
 - Tag 'lives' forever
 - Individual unique code
 - Real time data possible
 - Antenna performance diagnostics
 - Low maintenance
 - Limited depth
 - Antenna design
 - Initial investment

Fish migration monitoring methods TAGGING WITH PASSIVE TAGS (PIT)

Data are essential

- Unique tag ID's (ISO, ICAR)
- Data storage local (USB/reader) or remote (realtime)
- System performance data
- Notification emails (tags of interest, alerts)

Fish migration monitoring methods TAGGING WITH PASSIVE TAGS (PIT)

Data are essential

- Unique tag ID's (ISO, ICAR)
- Data storage local (USB/reader) or <u>remote (realtime</u>)
- System performance data
- Notification emails (tags of interest, alerts)

SITE MODULE

My Sites Files

▲ raf.baeyens@merck.com ▼

🛗 Status

Altenworth Photovoltaic East (9A2)			
Subscription ends:	01-01-2023		
Site Status			
() LAST UPDATE 10-20-2021 07:36 CEST			
Environmental Variables			

WATER	TEMP (C)	и Г	
<mark>န်င</mark> AIR	TEMP (C)		
	NTU N/A		
Test Tags			

Latest detection: Oct. 20, 2021, 7:20 a.m. Tag: 3E7.0000001D08

Live Tags

Latest detection: Oct. 19, 2021, 5:42 p.m. Tag: 3DD.003D41D729 Tag count: 5,629

Search Tag	•				1 ra
ð Site Info	all Trends 👻	Tags	🐥 Ale	rts 👻	L Users
FROM: 20/09/2021	TO: 21/	10/2021	⊞ DEC	IMAL: 🗆	TEST TAGS: 🗆
Detections					Tag D
Site	Date/Time	Controller	Antenna	Signal	Thu
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	N
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	
3DD.003D41D729	10-19-2021 05:42 PM	01	05	N/A	
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	🛕 Tag A
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	Set a tas
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	when a
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	Note: tag
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	instanta be up to
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	processe
3DD.003D5C32B7	10-18-2021 07:10 PM	01	04	N/A	Set Tag
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	
3DD.003D5C32B7	10-18-2021 07:09 PM	01	04	N/A	

🛕 Tag Alert

Set a tag alert to get notified when a tag is detected.

Note: tag alerts are not instantaneous. Notification could be up to 4 hours after tag is processed by Site Manager.

Privacy Policy

B O Logic

10-20-2021 07:36 CEST

My Sites Files

Search Tag

Antennas

4

(し)

#	NOISE (%)	CURRENT (A)	САР
01	• 70%	• 6.40	555
02	• 71%	• 8.10	609
03	• 70%	• 8.40	602
04	• 53%	• 8.60	603
05	• 41%	• 9.60	612
06	• 54%	• 8.10	606
07	• 51%	• 9.30	
08	• 34%	• 9.40	587
09	• 35%	• 8.60	496

Environmental Variables

Privacy Policy

Fish migration monitoring methods

TAGGING WITH PASSIVE TAGS (PIT)

Biomark in Europe

- Systems in 15 EU countries
- 22 new sites planned
- Fishways, weirs, in-river

Fishway monitoring in bypass rivers along the Danube

Verbund-Profish-EZB Fluss

Fishway monitoring in bypass rivers along the Danube

- 63 antennas at 13 locations
- In-river antennas: pass-over

Bypass river at Ottensheim Wilhering HPP

Fishway monitoring in bypass rivers along the Danube

Animal Health

Fishway monitoring in bypass rivers along the Danube

• 16.000 fish tagged, 46 spp.

Biomark

• Mainly bleak, roach, chub and nase

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

PIT Tags & continuous antenna readings provide essential information about:

Attraction and pass ability of the bypass rivers

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration
- Species specific migration behavior

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration
- Species specific migration behavior
- individual growth-rates (after recapture)

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration
- Species specific migration behavior
- individual growth-rates (after recapture)
- Allow calculation of survival rates

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration
- Species specific migration behavior
- individual growth-rates (after recapture)
- Allow calculation of survival rates
- Number of individuals (and species) passing the bypass is high

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration
- Species specific migration behavior
- individual growth-rates (after recapture)
- Allow calculation of survival rates
- Number of individuals (and species) passing the bypass is high
- Large and small fish are migrating up & downstream

Fishway monitoring in bypass rivers along the Danube

Conclusions by Profish:

- Attraction and pass ability of the bypass rivers
- Temporal use and habitat suitability of the bypass rivers
- Distance, direction & speed of fish migration
- Species specific migration behavior
- individual growth-rates (after recapture)
- Allow calculation of survival rates
- Number of individuals (and species) passing the bypass is high
- Large and small fish are migrating up & downstream
- The suitability of the bypass as fish habitat is proven

EU case studies: Germany

Fishway monitoring in fishways along the Inn

- Ongoing install of 22 sites, 3 more planned
- Both technical and semi-natural fishways

EU case studies: Germany

Fishway monitoring in fishways along the Inn

Other systems around Europe SHIELDED FISHWAY ANTENNAS

Other systems around Europe UNSHIELDED FISHWAY ANTENNAS

Other systems around Europe SUBMERSIBLE ANTENNAS

- All inclusive antenna (reader, antenna & batteries)
- 35 days standalone operation
- Deep water
- Can be baited

3 foot (0.9 m)

5 foot (1.5 m)

Other systems around Europe CORD ANTENNAS

More flexible Lengths 9,12,18,24m Pass-over, pass-through

Other systems around Europe FLOATING ANTENNAS

• Salmon smolt

Take home message

PIT tag systems

- are reliable for long term fish migration monitoring
- are possible on many locations
- provide robust data
- require almost no maintenance after install

Combination of techniques is always best option

Biomark staff in EU is happy to provide advice and support

Thank you ! Děkuji !

Raf.Baeyens@merck.com

